Abstract

When I read the paper “Electrolytes enriched by potassium perfluorinated sulfonates for lithium metal batteries” from Prof. Jianmin Ma's group, which was published in Science Bulletin (doi.org/10.1016/j.scib.2020.09.018), I felt excited as presented a multi-factor principle for applying potassium perfluorinated sulfonates to suppress the dendrite growth and protect the cathode from the viewpoint of electrolyte additives. The effects of these additives are revealed through experimental results, molecular dynamics simulations and first-principle calculations. Specifically, it involves the influence of additives on Li+ solvation structure, solid electrolyte interphase (SEI), Li growth and nucleation. Following the guidance of the multi-factor principle, every part of the additive molecule should be utilized to regulate electrolytes. This multi-factor principle for electrolyte additive molecule design (EAMD) offers a unique insight on understanding the electrochemical behavior of ion-type electrolyte additives on both the Li metal anode and high-voltage cathode. In these regards, I would be delighted to write a highlight for this innovative work and, hopefully, it may raise more interest in the areas of electrolyte additives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.