Abstract

25-Hydroxyvitamin D (25(OH)D) concentration is a complex trait with genetic and environmental predictors that may determine how much vitamin D exposure is required to reach optimal concentration. Interactions between continuous measures of a polygenic score (PGS) and vitamin D intake (PGS*intake) or available ultraviolet (UV) radiation (PGS*UV) were evaluated in individuals of African (n = 1,099) or European (n = 8,569) ancestries. Interaction terms and joint effects (main and interaction terms) were tested using one-degree of freedom (1-DF) and 2-DF models, respectively. Models controlled for age, sex, body mass index, cohort, and dietary intake/available UV. In addition, in participants achieving Institute of Medicine (IOM) vitamin D intake recommendations, 25(OH)D was evaluated by level PGS. The 2-DF PGS*intake, 1-DF PGS*UV, and 2-DF PGS*UV results were statistically significant in participants of European ancestry (p = 3.3 × 10-18 , p = 2.1 × 10-2 , and p = 2.4 × 10-19 , respectively), but not in those of African ancestry. In European-ancestry participants reaching IOM vitamin D intake guidelines, the percent of participants achieving adequate 25(OH)D ( >20 ng/ml) increased as genetic risk decreased (72% vs. 89% in highest vs. lowest risk; p = .018). Available UV radiation and vitamin D intake interact with genetics to influence 25(OH)D. Individuals with higher genetic risk may require more vitamin D exposure to maintain optimal 25(OH)D concentrations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call