Abstract
Given multiple source datasets with labels, how can we train a target model with no labeled data? Multi-source domain adaptation (MSDA) aims to train a model using multiple source datasets different from a target dataset in the absence of target data labels. MSDA is a crucial problem applicable to many practical cases where labels for the target data are unavailable due to privacy issues. Existing MSDA frameworks are limited since they align data without considering labels of the features of each domain. They also do not fully utilize the target data without labels and rely on limited feature extraction with a single extractor. In this paper, we propose Multi-EPL, a novel method for MSDA. Multi-EPL exploits label-wise moment matching to align the conditional distributions of the features for the labels, uses pseudolabels for the unavailable target labels, and introduces an ensemble of multiple feature extractors for accurate domain adaptation. Extensive experiments show that Multi-EPL provides the state-of-the-art performance for MSDA tasks in both image domains and text domains, improving the accuracy by up to 13.20%.
Highlights
Given multiple source datasets with labels, how can we train a target model with no labeled data? Large training data are essential for training deep neural networks
Finding out domain-invariant features has been the focus of Unsupervised domain adaptation (UDA) since it allows knowledge transfer from the labeled source dataset to the unlabeled target dataset
We propose MULTI-EPL (Multi-source domain adaptation with Ensemble of feature extractors, Pseudolabels, and Label-wise moment matching), a novel MSDA framework that mitigates the limitations of these methods of not explicitly considering conditional probability p(x|y), and having great redundancy in their models
Summary
Large training data are essential for training deep neural networks. Unsupervised domain adaptation (UDA) tackles these problems where no labeled data from the target domain are available, but labeled data from other source domains are provided. Finding out domain-invariant features has been the focus of UDA since it allows knowledge transfer from the labeled source dataset to the unlabeled target dataset. There have been many efforts to transfer the knowledge from a single source domain to a target one. Most recent frameworks minimize the distance between two domains by deep neural networks and distance-based techniques such as discrepancy regularizers [2,3,4], adversarial networks [5, 6], and generative networks [7,8,9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.