Abstract
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the etiology of an outbreak Covid-19. SARS-CoV-2 has a structural part consisting of spike glycoprotein, nucleoprotein N, membrane M and envelopes small membrane pentamer E. Immunoinformatic approach epitope analysis is developed to identify both weak and robust epitopes. Our study aims to identify several epitopes present in the spike glycoprotein, envelope, and membrane protein from the SARCoV-2 surface, with the help of insilico approach that highly potential as vaccine candidates. Analysis of antigeninicity was performed with the Kolaskar and Tongaonkar Antigenicity software. Epitope Mapping was analyzed using Linear Epitope Prediction Bepired. The structure of proteins with epitope regions was visualized by software Pyrex and PyMOL. Conserve analysis was performed using bio edit software. HLA mimicry was analyzed through HLAPred software. Molecular docking between the epitope with HLA I and HLA II was validated by Chimera and PyMOL software. The toxicity test for candidate vaccine peptides was carried out using ToxinPred software. Our study found seven potential epitope candidates as vaccine candidates. The seven epitopes were derived from spike proteins (5 epitopes), envelope proteins (1 epitope), and membrane proteins (1 epitope). All epitope codes are conserved and are not the same as HLA in Humans. The docking test results show a value with low affinity so that a strong bond can provide a high immune response. Toxicity tests show that all epitopes are non-toxic and safe to use as vaccine ingredients. Seven peptides from the spike, envelope, membrane protein that showed potential as vaccine candidates against Covid-19.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.