Abstract

There is no currently approved human vaccine against leishmaniasis. Utilization of immunogenic antigens and their epitopes capable of enhancing immune responses against leishmaniasis is a crucial step for rational in silico vaccine design. The objective of this study was to generate and evaluate a potential vaccine candidate against leishmaniasis, designed by immunodominant proteins from gp46 and gp63 of Leishmania major, which can stimulate helper T-lymphocytes (HTL) and cytotoxic T-lymphocytes (CTL). For this aim, the IFN-γ-inducing MHC-I and MHC-II binders were predicted for each examined protein (gp46 and gp63) and connected with appropriate linkers, along with an adjuvant (Mycobacterium tuberculosis L7/L12) and a histidine tag. The vaccine’s stability, antigenicity, structure, and interaction with the TLR-4 receptor were evaluated in silico. The resulting chimeric vaccine was composed of 344 amino acids and had a molecular weight of 35.64 kDa. Physico-chemical properties indicated that it was thermotolerant, soluble, highly antigenic, and non-allergenic. Predictions of the secondary and tertiary structures were made, and further analyses confirmed that the vaccine construct could interact with the human TLR-4 receptor. Virtual immune simulation demonstrated strong stimulation of T-cell responses, particularly by an increase in IFN-γ, following vaccination. In summary, the in silico data indicated that the vaccine candidate showed high antigenicity in humans. It was also found to trigger significant levels of clearance mechanisms and other components of the cellular immune profile. Nevertheless, further wet experiments are required to properly assess the efficacy of this multi-epitope vaccine candidate against leishmaniasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.