Abstract

For a static time slice of AdS_33 we describe a particular class of minimal surfaces which form trivalent networks of geodesics. Through geometric arguments we provide evidence that these surfaces describe a measure of multipartite entanglement. By relating these surfaces to Ryu-Takayanagi surfaces it can be shown that this multipartite contribution is related to the angles of intersection of the bulk geodesics. A proposed boundary dual [Phys. Rev. D 106, 126001 (2022), J. High Energy Phys. 08, 202 (2023), J. High Energy Phys. 05, 008 (2023)], the multi-entropy, generalizes replica trick calculations involving twist operators by considering monodromies with finite group symmetry beyond the cyclic group used for the computation of entanglement entropy. We make progress by providing explicit calculations of Renyi multi-entropy in two dimensional CFTs and geometric descriptions of the replica surfaces for several cases with low genus. We also explore aspects of the free fermion and free scalar CFTs. For the free fermion CFT we examine subtleties in the definition of the twist operators used for the calculation of Renyi multi-entropy. In particular the standard bosonization procedure used for the calculation of the usual entanglement entropy fails and a different treatment is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.