Abstract

The expression of β-amyloid peptides (Aβ), a pathological indicator of Alzheimer's disease (AD), was reported to be inapparent in the early stage of AD. While peroxynitrite (ONOO-) is produced excessively and emerges earlier than Aβ plaques in the progression of AD, it is thus significant to sensitively detect ONOO- for early diagnosis of AD and its pathological research. Herein, we unveiled an integrated sensor for monitoring ONOO-, which consisted of a commercially available field-effect transistor (FET) and a high-performance multi-engineered graphene extended-gate (EG) electrode. In the configuration of the presented EG electrode, laser-induced graphene (LIG) intercalated with MnO2 nanoparticles (MnO2/LIG) can improve the electrical properties of LIG and the sensitivity of the sensor, and graphene oxide (GO)-MnO2/Hemin nanozyme with ONOO- isomerase activity can selectively trigger the isomerization of ONOO- to NO3-. With this synergistic effect, our EG-FET sensor can respond to the ONOO- with high sensitivity and selectivity. Moreover, taking advantage of our EG-FET sensor, we modularly assembled a portable sensing platform for wireless tracking ONOO- levels in the brain tissue of AD transgenic mice at earlier stages before massive Aβ plaques appeared, and we systematically explored the complex role of ONOO- in the occurrence and development of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.