Abstract

Liquid Air Energy Storage (LAES) stores electricity in the form of a liquid cryogen while making hot and cold streams available during charging and discharging processes. The combination of electricity, hot and cold makes LAES a promising asset for the management of multi-energy streams in various energy systems; however, such opportunity has not received attention so far. To overcome the traditional view of LAES as electricity storage only, this study investigates the techno-economic value of using LAES as a smart multi-energy asset for the provision of heat and cold, alongside power, in districts with heating and cooling networks. A reduced thermodynamic model of LAES was developed, validated and used to i) quantify the thermodynamic efficiency for a multi-energy LAES, ii) generalise the multi-energy capability of LAES over the three energy vectors considered iii) link different plant designs and integration conditions – in terms of loads and temperatures – with the associated multi-energy LAES performance and iv) describe multi-energy LAES operation as part of two district sizes, for provision of peak and base load. It is found that, by leveraging the vector-coupling capability of LAES, more flexible district operation can be achieved, with increased LAES energy efficiency from 47% to 72.8% and up to 8–12% reduction of operational costs, in the considered integration case studies. Results demonstrate the technical feasibility of multi-energy LAES operation and illustrate the associated trade-offs and potential: new perspectives for smart management of multi-energy systems are opened up.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.