Abstract

For complicated structural components characterized by wide X-ray attenuation ranges, the conventional fixed-energy imaging mode cannot obtain all structural information using a single tube voltage. This limitation results in information shortage, because the effective thickness of components along the orientation of the X-ray penetration exceeds the limit of the dynamic range of the X-ray imaging system. To solve this problem, multi-energy image sequence fusion technology has been advanced. In this new method, the tube voltage is adjusted several times by matching the voltage and the effective thickness to obtain all the effective local information on an object. Then, the subset sequences in the multi-energy image sequence are extracted based on the recursive template, and that are fused to reconstruct the full projection information based on linear weighting. An accompanying experiment demonstrates that the new technology can extend the dynamic range of X-ray imaging and provide a complete representation of the internal structure of complicated structural components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.