Abstract

Atomic minerals are the smallest components of bone and the content of Ca, being the most abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is associated with low bone mass and higher bone fracture rates. However, bone strength is determined not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis tibial and maxillary trabecular bone was investigated in comparison with sham operated normal bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group, Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those in normal bone at all time-points. The present study indicates that ovariectomy could significantly impact the element distribution and concentrations between tibia and maxilla.

Highlights

  • Osteoporosis (OP) is a progressive systemic skeletal disease affecting 200 million people worldwide [1]

  • The average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were analysed by LA-ICP-MS in both tibia and maxilla at set time points (Table 1)

  • It was noteworthy that Ovx resulted in greater concentrations of 28Si, 77Se, and 208Pb in both tibia and maxilla compared with the sham group over the time course

Read more

Summary

Introduction

Osteoporosis (OP) is a progressive systemic skeletal disease affecting 200 million people worldwide [1]. It is characterized by low bone mass and inferior strength that leads to increased fragility and risk of bone fractures. Ovariectomy (Ovx) induces “postmenopausal” OP in rats and is a commonly-used experimental model to better understand the pathophysiological mechanisms of OP. This model is characterized by continuous bone loss and an increased rate of bone turnover due to estrogen deficiency [7,8,9]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.