Abstract

Wine is one of the most popular alcoholic beverages. Therefore, the control of the elemental composition is necessary throughout the entire production process from the grapes to the final product. The content of some elements in wine is very important from the organoleptic and nutritional points of view. Nowadays, wine studies have also been undertaken in order to perform wine categorization and/or to verify the authenticity of products. The main objective of this research was to evaluate the influence of the chosen factors (type of wine, producer, origin) on the levels of 28 elements in 180 wine samples. The concentration of studied elements was determined by ICP-MS (Ag, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Te, Tl, U, Zn), ICP-OES (Ca, Fe, K, Mg, Ti), and CVAAS (Hg) techniques in 79 red, 75 white, and 26 rose wine samples. In general, red wines contained higher values of mean and median of B, Ba, Cr, Cu, Mn, Sr and Zn in contrast to other wine types (white and rose). In white wines (when compared to red and rose wines) higher levels of elements such as Ag, Be, Bi, Cd, Co, Li, K and Ti were determined. In contrast, rose wines were characterized by a higher concentration of Fe and U. The study also revealed that in the case of 18 samples, the maximum levels of some metals (Cd—8 samples, Pb—9 samples, Cu—1 sample) were slightly exceeded according to the OIV standards, while for Zn and Ti in any wine sample the measured concentrations of these metals were above the permissible levels. Thus, it can be stated that the studied wines contained, in general, lower levels of heavy metals, suggesting that they should have no effect on the safety of consumption. The results also showed higher pH level for red wines as a consequence of the second fermentation process which is typically carried out for this type of wine (malolactic fermentation). The highest median value of pH was reported for Merlot-based wines, while the lowest was for Riesling. It is assumed that dry Riesling has a higher content of tartaric and malic acid than dry Chardonnay grown in the same climate. From all of the studied countries, wines from Poland seemed to present one of the most characteristic elemental fingerprints since for many elements relatively low levels were recorded. Moreover, this study revealed that also wine samples from USA and Australia can be potentially discriminated from the rest of studied wines. For USA the most characteristic metal for positive identification of the country of origin seems to be uranium, whereases for Australia – strontium and manganese. Based on the highly reduced set of samples, it was not possible to differentiate the studied wine products according to the grape variety other than Syrah, and partially Chardonnay. Since all the Syrah-based samples originated from the same country (Australia) thus, the observed grouping should be more related with the country of origin than the grape variety.

Highlights

  • Wine is one of the oldest known alcoholic beverages, which is commercially and domestically produced as a result of grape must fermentation

  • Since all the Syrah-based samples originated from the same country (Australia) the observed grouping should be more related with the country of origin than the grape variety

  • There is a strong need to carry out scientific research in this field that can broaden our knowledge of the importance of dangerous ingredients in products consumed in our diet, which may potentially have a negative impact on our health

Read more

Summary

Introduction

Wine is one of the oldest known alcoholic beverages, which is commercially and domestically produced as a result of grape must fermentation. Wine samples are recognized as a relatively complex matrix from an analytical procedure perspective, since besides water, they contain ethanol (typically between 9 and 15%), organic acids (such as malic acid, tartaric acid, citric acid, acetic acid or lactic acid—as a result of a malolactic fermentation), and carbohydrates (e.g., polycyclic aromatic hydrocarbons) [1]. Wine analysis seems to draw much attention because of its importance in assessing the quality of a food product, possible verification of adulteration, and analysis of its position in the production chain in the agriculture and the food industries. In addition to analyzing organic ingredients such as acids, sugars, flavonoids, and aromatic and flavoring compounds, analysis of the elemental composition is an important parameter of quality assessment. It has been proven that apart from the main wine components, some compounds that are present at relatively low levels can significantly affect the wine characteristics in terms of wine quality by changing the taste or color

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call