Abstract
Visible light communications (VLCs) are a promising technology to address the spectrum crunch problem in radio frequency networks. A major advantage of VLC networks is that they can use the existing lighting infrastructure in indoor environments, which may have large number of LEDs for illumination. While LEDs used for lighting typically have limited bandwidth, presence of many LEDs can be exploited for indoor VLC networks, to serve each user by multiple LEDs for improving link quality and throughput. In this paper, LEDs are grouped and assigned to the users based on received signal strength from each LED, for which different solutions are proposed to achieve maximum throughput, proportional fairness, and quality of service. Additionally, power optimization of LEDs for a given assignment is investigated, and the Jacobian and Hessian matrices of the corresponding optimization problem are derived. Moreover, for multi-element receivers with LED grouping at the transmitter, an improved optimal combining method is proposed. This method suppresses interference caused by simultaneous data transfer of LEDs and improves the overall signal-to-interference-plus-noise-ratio by 2–5 dB. Lastly, an efficient calculation of channel response is presented to simulate multipath VLC channel with low computational complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.