Abstract

Microscopic fuel fragments, so-called “hot particles”, were released during the 1986 accident at the Chornobyl nuclear powerplant and continue to contaminate the exclusion zone in northern Ukraine. Isotopic analysis can provide vital information about sample origin, history and contamination of the environment, though it has been underutilized due to the destructive nature of most mass spectrometric techniques, and inability to remove isobaric interference. Recent developments have diversified the range of elements that can be investigated through resonance ionization mass spectrometry (RIMS), notably in the fission products. The purpose of this study is to demonstrate the application of multi-element analysis on hot particles as relates to their burnup, particle formation in the accident, and weathering. The particles were analysed with two RIMS instruments: resonant-laser secondary neutral mass spectrometry (rL-SNMS) at the Institute for Radiation Protection and Radioecology (IRS) in Hannover, Germany, and laser ionization of neutrals (LION) at Lawrence Livermore National Laboratory (LLNL) in Livermore, USA. Comparable results across instruments show a range of burnup dependent isotope ratios for U and Pu and Cs, characteristic of RBMK-type reactors. Results for Rb, Ba and Sr show the influence of the environment, retention of Cs in the particles and time passed since fuel discharge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.