Abstract

We develop a multi-element generalized polynomial chaos (ME-gPC) method for arbitrary probability measures and apply it to solve ordinary and partial differential equations with stochastic inputs. Given a stochastic input with an arbitrary probability measure, its random space is decomposed into smaller elements. Subsequently, in each element a new random variable with respect to a conditional probability density function (PDF) is defined, and a set of orthogonal polynomials in terms of this random variable is constructed numerically. Then, the generalized polynomial chaos (gPC) method is implemented element-by-element. Numerical experiments show that the cost for the construction of orthogonal polynomials is negligible compared to the total time cost. Efficiency and convergence of ME-gPC are studied numerically by considering some commonly used random variables. ME-gPC provides an efficient and flexible approach to solving differential equations with random inputs, especially for problems related to long-term integration, large perturbation, and stochastic discontinuities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.