Abstract
The purpose of this study was to identify a characteristic elemental tyre fingerprint that can be utilised in atmospheric source apportionment calculations. Currently zinc is widely used as a single element tracer to quantify tyre wear, however several authors have highlighted issues with this approach. To overcome this, tyre rubber tread was digested and has been analysed for 25 elements by ICP-MS to generate a multielement profile. Additionally, to estimate the percentage of the tyre made up of inert fillers, thermogravimetric analysis was performed on a subset. Comparisons were made between passenger car and heavy goods vehicle tyre composition, and a subset of tyres had both tread and sidewall sampled for further comparison. 19 of the 25 elements were detected in the analysis. The mean mass fraction of zinc detected was 11.17 g/kg, consistent with previous estimates of 1% of the tyre mass. Aluminium, iron, and magnesium were found to be the next most abundant elements. Only one source profile for tyre wear exists in both the US and EU air pollution species profile databases, highlighting the need for more recent data with better coverage of tyre makes and models. This study provides data on new tyres which are currently operating on-road in Europe and is therefore relevant for ongoing atmospheric studies assessing the levels of tyre wear particles in urban areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.