Abstract
The deinking in the paper industry is in great demand, and microbial enzymes are key players. In the present study, the endoglucanase production from newly isolated fungi Aspergillus niger MPS25 is reported. The optimization of endoglucanase production was carried out using one factor at a time approach resulting in endoglucanase activity (2.37 IU/ml) at 45 °C and pH 8 in submerged fermentation (SmF), which shows optimum enzyme activity at 60 °C. Interestingly, the metal ions viz. Co2+ stimulated the endoglucanase activity, whereas Mn2+ reduced the enzyme activity, which shows that this enzyme can be used for effluent treatment released through deinking. The enzymatic hydrolysis of wheat straw produced 26.96 ± 0.108 mg/g of reducing sugars, indicating its potential in saccharification and the biofuel industry. Furthermore, the validation of the deinking efficiency of this enzyme resulted in improved deinking of mixed office waste and old newspapers by 31.5% and 20.4%, respectively. The strength properties, viz. burst factor and tear index, breaking length, and tensile index of the handmade paper sheets, were also improved which were analyzed by the scanning electron micrographs. The FTIR and XRD analysis of pulp provided insights into the changes in functional groups and cellulose crystallinity, respectively. These results indicate that multi-efficient endoglucanase from Aspergillus niger MPS25 is suitable for enzyme-based eco-friendly deinking for waste paper recycling and lignocellulosic biomass saccharification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.