Abstract

The aim of this study was to develop micellar nanocarriers for concomitant delivery of paclitaxel and 17-allylamino-17-demethoxygeldanamycin (17-AAG) for cancer therapy. Paclitaxel and 17-AAG were simultaneously loaded into polymeric micelles by a solvent evaporation method. Two candidate nanocarrier constructs, polyethylene glycol–poly( d, l-lactic acid) (PEG–PLA) micelles and PEG-distearoylphosphatidylethanolamine/tocopheryl polyethylene glycol 1000 (PEG-DSPE/TPGS) mixed micelles, were assessed for the release kinetics of the loaded drugs. Compared to PEG–PLA micelles, entrapment of paclitaxel and 17-AAG into PEG-DSPE/TPGS mixed micelles resulted in significantly prolonged release half-lives. The simultaneous incorporation of paclitaxel and 17-AAG into PEG-DSPE/TPGS mixed micelles was confirmed by 1H NMR analysis. Paclitaxel/17-AAG-loaded PEG-DSPE/TPGS mixed micelles were as effective in blocking the proliferation of human ovarian cancer SKOV-3 cells as the combined free drugs. PEG-DSPE/TPGS mixed micelles may provide a novel and advantageous delivery approach for paclitaxel/17-AAG combination therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.