Abstract

We propose the relaxation algorithm as a simple and powerful method for simulating the transition process in growth models. This method has a number of important advantages: (1) It can easily deal with a wide range of dynamic systems including stiff differential equations and systems giving rise to a continuum of stationary equilibria. (2) The application of the procedure is fairly user friendly. The only input required consists of the dynamic system. (3) The variant of the relaxation algorithm we propose exploits in a natural manner the infinite time horizon, which usually underlies optimal control problems in economics. As an illustrative application, we simulate the transition process of the Jones (1995) and the Lucas (1988) model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.