Abstract
The demise of Dennard’s scaling has created both power and utilization wall challenges for computer systems. As transistors operating in the near-threshold region are able to obtain flexible trade-offs between power and performance, it is regarded as an alternative solution to the scaling challenge. A reduction in supply voltage will nevertheless generate significant reliability challenges, while maintaining an error-free system that generates high costs in both performance and energy consumption. The main purpose of research on computer architecture has therefore shifted from performance improvement to complex multi-objective optimization. In this paper, we propose a three-dimensional optimization approach which can effectively identify the best system configuration to establish a balance among performance, energy, and reliability. We use a dynamic programming algorithm to determine the proper voltage and approximate level based on three predictors: system performance, energy consumption, and output quality. We propose an output quality predictor which uses a hardware/software co-design fault injection platform to evaluate the impact of the error on output quality under near-threshold computing (NTC). Evaluation results demonstrate that our approach can lead to a 28% improvement in output quality with a 10% drop in overall energy efficiency; this translates to an approximately 20% average improvement in accuracy, power, and performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers of Information Technology & Electronic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.