Abstract
The Polymer Electrolyte Membrane Water Electrolyser (PEMWE) has gained significant interest among various electrolysis methods due to its ability to produce highly purified, compressed hydrogen. The spatial configuration of bipolar plates and their flow channel patterns play a critical role in the efficiency and longevity of the PEM water electrolyser. Optimally designed flow channels ensure uniform pressure and velocity distribution across the stack, enabling high-pressure operation and facilitating high current densities. This study uses flow channel geometry inspired by authentic vine leaf patterns found in biomass, based on various plant leaves, including Soybean, Victoria Amazonica, Water Lily, Nelumbo Nucifera, Kiwi, and Acalypha Hispida leaves, as a novel channel pattern to design a PEM bipolar plate with a circular cross-section area of 13.85 cm2. The proposed bipolar design is further analysed with COMSOL Multiphysics to integrate the conservation of mass and momentum, molecular diffusion (Maxwell–Stefan), charge transfer equations, and other fabrication factors into a cohesive single-domain model. The simulation results showed that the novel designs have the most uniform velocity profile, lower pressure drop, superior pressure distribution, and heightened mixture homogeneity compared to the traditional serpentine models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.