Abstract
We analyze a nonlinear pricing model with limited information. Each buyer can purchase a large variety, d, of goods. His preference for each good is represented by a scalar and his preference over d goods is represented by a d-dimensional vector. The type space of each buyer is given by a compact subset of Rd with a continuum of possible types. By contrast, the seller is limited to offer a finite number M of d-dimensional choices.We provide necessary conditions that the optimal finite menu of the social welfare maximizing problem has to satisfy. We establish an underlying connection to the theory of quantization and provide an estimate of the welfare loss resulting from the usage of the d-dimensional M-class menu. We show that the welfare loss converges to zero at a rate proportional to d/M^{2/d}.We show that in higher dimensions, a significant reduction in the welfare loss arises from an optimal partition of the d-dimensional type space that takes advantage of the correlation among the d parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.