Abstract

Wind-driven desalination is a representative technology of renewable energy that not only alleviates water shortages but also reduces greenhouse gas (GHG) emissions generated by the utilization of fossil fuels. This study examined the GHG emissions from a wind-driven seawater desalination system by using the hybrid input-output life-cycle analysis (IO-LCA) to undertake a comprehensive low-carbon assessment by comparing with traditional thermal seawater desalination systems over the whole life cycle. The findings indicate that the GHG emissions of the wind-driven seawater desalination system are 96.14% lower than those of the traditional system. According to estimations, if reverse osmosis (RO) desalination is driven by wind power technologies at a larger scale, the annual GHG emissions can be reduced by an amount between 7.54E+05 and 3.71E+06 t CO2-eq. Although the construction stage increases the emissions to 55.41% over the whole life cycle, the payback period (Ypp) is about 2.69 years, which means that the level of GHG emissions could be reduced by 25.42% of the level of the traditional systems. Based on the multi-dimensional low-carbon assessment, this study is expected to provide quantitative assessments and policy implications to integrate low-carbon technologies with seawater desalination and promote sustainable development of seawater desalination industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.