Abstract
Background and ObjectiveDeep learning abdominal multi-organ segmentation provides preoperative guidance for abdominal surgery. However, due to the large volume of 3D CT sequences, the existing methods cannot balance complete semantic features and high-resolution detail information, which leads to uncertain, rough, and inaccurate segmentation, especially in small and irregular organs. In this paper, we propose a two-stage algorithm named multi-dimensional cascaded net (MDCNet) to solve the above problems and segment multi-organs in CT images, including the spleen, kidney, gallbladder, esophagus, liver, stomach, pancreas, and duodenum. MethodsMDCNet combines the powerful semantic encoder ability of a 3D net and the rich high-resolution information of a 2.5D net. In stage1, a prior-guided shallow-layer-enhanced 3D location net extracts entire semantic features from a downsampled CT volume to perform rough segmentation. Additionally, we use circular inference and parameter Dice loss to alleviate uncertain boundary. The inputs of stage2 are high-resolution slices, which are obtained by the original image and coarse segmentation of stage1. Stage2 offsets the details lost during downsampling, resulting in smooth and accurate refined contours. The 2.5D net from the axial, coronal, and sagittal views also compensates for the missing spatial information of a single view. ResultsThe experiments on the two datasets both obtained the best performance, particularly a higher Dice on small gallbladders and irregular duodenums, which reached 0.85±0.12 and 0.77±0.07 respectively, increasing by 0.02 and 0.03 compared to the state-of-the-art method. ConclusionOur method can extract all semantic and high-resolution detail information from a large-volume CT image. It reduces the boundary uncertainty while yielding smoother segmentation edges, indicating good clinical application prospects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.