Abstract
Proteomes are well known to poorly correlate with transcriptomes measured from the same sample. While connected, the complex processes that impact the relationships between transcript and protein quantities remains an open research topic. Many studies have attempted to predict proteomes from transcriptomes with limited success. Here we use publicly available data from the Clinical Proteomics Tumor Analysis Consortium to show that deep learning models designed by neural architecture search (NAS) achieve improved prediction accuracy of proteome quantities from transcriptomics. We find that this benefit is largely due to including a residual connection in the architecture that allows input information to be remembered near the end of the network. Finally, we explore which groups of transcripts are functionally important for protein prediction using model interpretation with SHAP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.