Abstract

Vibration signal and its derivative have shown some promise in structural damage detection in previous research. However, the theoretical and practical difficulties of multi-damage detection in plate structures based on dynamic responses remain. In this paper, an efficient damage localization index based on frequency response function (FRF) is presented. The imaginary part of FRF (IFRF) is extracted to derive the new localization index due to its relation to modal flexibility. For avoiding the finite element model error, two-dimensional gapped smoothing method (GSM) is employed without the need for baseline data from a presumably undamaged structure. Experimental studies on a steel plate with two localized defects in different boundary conditions are performed. The results are compared with some typical damage indices in the literature, such as mode shapes, uniform load surface and IFRF. In order to mitigate the inherent disadvantages of GSM in anti-noise ability, a simple statistical treatment based on Thompson outlier analysis is finally used for noise suppression. The effect of damage level and boundary condition on the detection results is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call