Abstract

In this paper we present a new approach for constructing the wavelet filter bank. Our approach enables constructing nonseparable multidimensional non-redundant wavelet filter banks with FIR filters using the Quillen-Suslin Theorem for Laurent polynomials. Our construction method presents some advantages over the traditional methods of multidimensional wavelet filter bank design. First, it works for any spatial dimension and for any sampling matrix. Second, it does not require the initial lowpass filters to satisfy any additional assumption such as interpolatory condition. Third, it provides an algorithm for constructing a wavelet filter bank from a single lowpass filter so that its vanishing moments are at least as many as the accuracy number of the lowpass filter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.