Abstract

Federated Learning (FL) has received tremendous attention as a decentralized machine learning (ML) framework that allows distributed data owners to collaboratively train a global model without sharing raw data. Since FL trains the model directly on edge devices, the heterogeneity of participating clients in terms of data distribution, hardware capabilities and network connectivity can significantly impact the overall performance of FL systems. Optimizing for model accuracy could extend the training time due to the diverse and resource-constrained nature of edge devices while minimizing training time could compromise the model's accuracy. Effective client selection thus becomes crucial to ensure that the training process is not only efficient but also capitalizes on the diverse data and computational capabilities of different devices. To this end, we propose FedPROM, a novel framework that tackles client selection in FL as a multi-criteria optimization problem. By leveraging the PROMETHEE method, FedPROM ranks clients based on their suitability for a given FL task, considering multiple criteria such as system resources, network conditions, and data quality. This approach allows FedPROM to dynamically select the most appropriate set of clients for each learning round, optimizing both model accuracy and training efficiency. Our evaluations on diverse datasets demonstrate that FedPROM outperforms several state-of-the-art FL client selection protocols in terms of convergence speed, and accuracy, highlighting the framework's effectiveness and the importance of multi-criteria client selection in FL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call