Abstract
Many tourism recommender systems have been studied to offer users the items meeting their interests. However, it is a non-trivial task to reflect the multi-criteria ratings and the cultural differences, which significantly influence users’ reviews of tourism facilities, into recommendation services. This paper proposes two “single tensor” models, consisting of users (or countries), items, multi-criteria ratings, and cultural groups, in order to consider simultaneously an inherent structure and interrelations of these factors into recommendation processes. With one Tripadvisor dataset, including 13 K users from 120 countries, experiments demonstrated that, in terms of MAE, the two proposed models for user and country give an improvement of 21.31% and 7.11% than other collaborative filtering and multi-criteria recommendation techniques. Besides, there were the positive influences of multiple-criteria ratings and cultural group factors on recommendation performances. The comparative analysis of several variants of the proposed models showed that considering Western and Eastern cultures is appropriate for improving predictive performances and their stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.