Abstract

Several neglected and underutilised species (NUS) provide solutions to climate change and creating a Zero Hunger world, the Sustainable Development Goal 2. Several NUS are drought and heat stress-tolerant, making them ideal for improving marginalised cropping systems in drought-prone areas. However, owing to their status as NUS, current crop suitability maps do not include them as part of the crop choices. This study aimed to develop land suitability maps for selected NUS [sorghum, (Sorghum bicolor), cowpea (Vigna unguiculata), amaranth and taro (Colocasia esculenta)] using Analytic Hierarchy Process (AHP) in ArcGIS. Multidisciplinary factors from climatic, soil and landscape, socio-economic and technical indicators overlaid using Weighted Overlay Analysis. Validation was done through field visits, and area under the curve (AUC) was used to measure AHP model performance. The results indicated that sorghum was highly suitable (S1) = 2%, moderately suitable (S2) = 61%, marginally suitable (S3) = 33%, and unsuitable (N1) = 4%, cowpea S1 = 3%, S2 = 56%, S3 = 39%, N1 = 2%, amaranth S1 = 8%, S2 = 81%, S3 = 11%, and taro S1 = 0.4%, S2 = 28%, S3 = 64%, N1 = 7%, of calculated arable land of SA (12 655 859 ha). Overall, the validation showed that the mapping exercises exhibited a high degree of accuracies (i.e. sorghum AUC = 0.87, cowpea AUC = 0.88, amaranth AUC = 0.95 and taro AUC = 0.82). Rainfall was the most critical variable and criteria with the highest impact on land suitability of the NUS. Results of this study suggest that South Africa has a huge potential for NUS production. The maps developed can contribute to evidence-based and site-specific recommendations for NUS and their mainstreaming. Also, the maps can be used to design appropriate production guidelines and to support existing policy frameworks which advocate for sustainable intensification of marginalised cropping systems through increased crop diversity and the use of stress-tolerant food crops.

Highlights

  • The world is challenged by the need to feed a growing population with healthy food while minimising the negative impacts on the environment and adapting to changing climate [1]

  • These results show the existing distribution of the land suitability classes, excluding areas where present land use is nature conservation, plantation, urban and water

  • We investigated the potential spatial suitability distribution for sorghum, cowpea, amaranth and taro in South Africa

Read more

Summary

Introduction

The world is challenged by the need to feed a growing population with healthy food while minimising the negative impacts on the environment and adapting to changing climate [1]. It is understood that inherent water scarcity, exacerbated by climate variability and changes in land use, has contributed to reduced land available for agricultural expansion for the production of major crops especially in resourcepoor farming systems [4]. Considering these challenges, agriculture requires innovative approaches that seek to address, issues of food and nutrition security and environmental degradation, adapt to climate variability and land use planning. There is a need to introduce and promote practices that fit “into” or “with” current smallholder production systems while complementing existing efforts to improve resilience to climate variability and change as well as intensifying productivity for sustainable food and nutrition security [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call