Abstract

The rapid growth of the Internet of Things (IoT) and big data has raised security concerns. Protecting IoT big data from attacks is crucial. Detecting real-time network attacks efficiently is challenging, especially in the resource-limited IoT setting. To enhance IoT security, intrusion detection systems using traffic features have emerged. However, these face difficulties due to varied traffic feature formats, hindering fast and accurate detection model training. To tackle accuracy issues caused by irrelevant features, a new model, LVW-MECO (LVW enhanced with multiple evaluation criteria), is introduced. It uses the LVW (Las Vegas Wrapper) algorithm with multiple evaluation criteria to identify pertinent features from IoT network data, boosting intrusion detection precision. Experimental results confirm its efficacy in addressing IoT security problems. LVW-MECO enhances intrusion detection performance and safeguards IoT data integrity, promoting a more secure IoT environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.