Abstract

This paper evaluates nine types of electrical energy generation options with regard to seven criteria. The options use natural gas or hydrogen as a fuel. The Analytic Hierarchy Process was used to perform the evaluation, which allows decision-making when single or multiple criteria are considered. The options that were evaluated are the hydrogen combustion turbine, the hydrogen internal combustion engine, the hydrogen fuelled phosphoric acid fuel cell, the hydrogen fuelled solid oxide fuel cell, the natural gas fuelled phosphoric acid fuel cell, the natural gas fuelled solid oxide fuel cell, the natural gas turbine, the natural gas combined cycle and the natural gas internal combustion engine. The criteria used for the evaluation are CO 2 emissions, NO X emissions, efficiency, capital cost, operation and maintenance costs, service life and produced electricity cost. A total of 19 scenarios were studied. In 15 of these scenarios, the hydrogen turbine ranked first and proved to be the most preferred electricity production technology. However since the hydrogen combustion turbine is still under research, the most preferred power generation technology which is available nowadays proved to be the natural gas combined cycle which ranked first in five scenarios and second in eight. The last in ranking electricity production technology proved to be the natural gas fuelled phosphoric acid fuel cell, which ranked in the last position in 13 scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call