Abstract

<abstract> <p>Pythagorean cubic fuzzy sets (PCFSs) are a more advanced version of interval-valued Pythagorean fuzzy sets where membership and non-membership are depicted using cubic sets. These sets offer a greater amount of data to handle uncertainties in the information. However, there has been no previous research on the use of Einstein operations for aggregating PCFSs. This study proposes two new aggregator operators, namely, Pythagorean cubic fuzzy Einstein weighted averaging (PCFEWA) and Pythagorean cubic fuzzy Einstein ordered weighted averaging (PCFEOWA), which extend the concept of Einstein operators to PCFSs. These operators offer a more effective and precise way of aggregating Pythagorean cubic fuzzy information, especially in decision-making scenarios involving multiple criteria and expert opinions. To illustrate the practical implementation of this approach, we apply an established MCDM model and conduct a case study aimed at identifying the optimal investment market. This case study enables the evaluation and validation of the established MCDM model's effectiveness and reliability, thus making a valuable contribution to the field of investment analysis and decision-making. The study systematically compares the proposed approach with existing methods and demonstrates its superiority in terms of validity, practicality and effectiveness. Ultimately, this paper contributes to the ongoing development of sophisticated techniques for modeling and analyzing complex systems, offering practical solutions to real-world decision-making problems.</p> </abstract>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.