Abstract

The acidic thermostable xylanase (AT-xynA) has great potential in the feed industry, but its low activity is not conductive to large-scale production, and its application in poultry diets still needs to be further evaluated. In Experiment1, AT-xynA activity increased 3.10 times by constructing multi-copy strains, and the highest activity reached 10,018.29 ± 91.18 U/mL. AT-xynA showed protease resistance, high specificity for xylan substrates, xylobiose and xylotriose were the main hydrolysates. In Experiment2, 192 broilers were assigned into 3 treatments including a wheat-based diet, and the diets supplemented with AT-xynA during the entire period (XY-42) or exclusively during the early stage (XY-21). AT-xynA improved growth performance, while the performance of XY-21 and XY-42 was identical. To further clarify the mechanism underlying the particular effectiveness of AT-xynA during the early stage, 128 broilers were allotted into 2 treatments including a wheat-based diet and the diet supplemented with AT-xynA for 42 d in Experiment3. AT-xynA improved intestinal digestive function and microbiota composition, the benefits were stronger in younger broilers than older ones. Overall, the activity of AT-xynA exhibiting protease resistance and high xylan degradation ability increased by constructing multi-copy strains, and AT-xynA was particularly effective in improving broiler performance during the early stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call