Abstract
Quantitative phase imaging (QPI) has emerged as a new digital histopathologic tool as it provides structural information of conventional slide without staining process. It is also capable of imaging biological tissue sections with sub-nanometer sensitivity and classifying them using light scattering properties. Here we extend its capability further by using optical scattering properties as imaging contrast in a wide-field QPI. In our first step towards validation, QPI images of 10 major organs of a wild-type mouse have been obtained followed by H&E-stained images of the corresponding tissue sections. Furthermore, we utilized deep learning model based on generative adversarial network (GAN) architecture for virtual staining of phase delay images to a H&E-equivalent brightfield (BF) image analogues. Using the structural similarity index, we demonstrate similarities between virtually stained and H&E histology images. Whereas the scattering-based maps look rather similar to QPI phase maps in the kidney, the brain images show significant improvement over QPI with clear demarcation of features across all regions. Since our technology provides not only structural information but also unique optical property maps, it could potentially become a fast and contrast-enriched histopathology technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.