Abstract

The existence of multiple biomolecular condensates inside living cells is a peculiar phenomenon not compatible with the predictions of equilibrium statistical mechanics. In this work, we address the problem of multiple condensates state (MCS) from a functional perspective. We combine Langevin dynamics, reaction-diffusion simulation, and dynamical systems theory to demonstrate that MCS can indeed be a function optimization strategy. Using Arp2/3 mediated actin nucleation pathway as an example, we show that actin polymerization is maximum at an optimal number of condensates. For a fixed amount of Arp2/3, MCS produces a greater response compared to its single condensate counterpart. Our analysis reveals the functional significance of the condensate size distribution which can be mapped to the recent experimental findings. Given the spatial heterogeneity within condensates and non-linear nature of intracellular networks, we envision MCS to be a generic functional solution, so that structures of network motifs may have evolved to accommodate such configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.