Abstract

Knowledge Graph Completion (KGC) aims at inferring missing entities or relations by embedding them in a low-dimensional space. However, most existing KGC methods generally fail to handle the complex concepts hidden in triplets, so the learned embeddings of entities or relations may deviate from the true situation. In this article, we propose a novel M ulti- c oncept R epresentation L earning (McRL) method for the KGC task, which mainly consists of a multi-concept representation module, a deep residual attention module, and an interaction embedding module. Specifically, instead of the single-feature representation, the multi-concept representation module projects each entity or relation to multiple vectors to capture the complex conceptual information hidden in them. The deep residual attention module simultaneously explores the inter- and intra-connection between entities and relations to enhance the entity and relation embeddings corresponding to the current contextual situation. Moreover, the interaction embedding module further weakens the noise and ambiguity to obtain the optimal and robust embeddings. We conduct the link prediction experiment to evaluate the proposed method on several standard datasets, and experimental results show that the proposed method outperforms existing state-of-the-art KGC methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.