Abstract
Abstract One of the important issues is risk assessment and calculation in complex and multi-component systems. In this paper, the estimation of multi-component stress-strength reliability for the Weibull distribution under the progressive Type-II censored samples is studied. We assume that both stress and strength are two independent Weibull distributions with different parameters. First, assuming the same shape parameter, the maximum likelihood estimation (MLE), different approximations of Bayes estimators (Lindley’s approximation and Markov chain Monte Carlo method) and different confidence intervals (asymptotic and highest posterior density) are obtained. In the case when the shape parameter is known, the MLE, uniformly minimum variance unbiased estimator (UMVUE), exact Bayes estimator and different confidence intervals (asymptotic and highest posterior density) are considered. Finally, in the general case, the statistical inferences on multi-component stress-strength reliability are derived. To compare the performances of different methods, Monte Carlo simulations are performed. Moreover, one data set for illustrative purposes is analyzed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.