Abstract

We performed a longitudinal case-control study on patients with clinically isolated syndrome (CIS) with the aid of quantitative whole-brain myelin imaging. The aim was (1) to parse early myelin decay and to break down its distribution pattern, and (2) to identify an imaging biomarker of the conversion into clinically definite Multiple Sclerosis (MS) based on in vivo measurable changes of myelination.Imaging and clinical data were collected immediately after the onset of first neurological symptoms and follow-up explorations were performed after 3, 6, and, 12 months. The multi-component Driven Equilibrium Single Pulse Observation of T1/T2 (mcDESPOT) was applied to obtain the volume fraction of myelin water (MWF) in different white matter (WM) regions at every time-point. This measure was subjected to further voxel-based analysis with the aid of a comparison of the normal distribution of myelination measures with an age and sex matched healthy control group. Both global and focal relative myelination content measures were retrieved.We found that (1) CIS patients at the first clinical episode suggestive of MS can be discriminated from healthy control WM conditions (p < 0.001) and therewith reproduced our earlier findings in late CIS, (2) that deficient myelination in the CIS group increased in T2 lesion depending on the presence of gadolinium enhancement (p < 0.05), and (3) that independently the CIS T2 lesion relative myelin content provided a risk estimate of the conversion to clinically definite MS (Odds Ratio 2.52).We initially hypothesized that normal appearing WM myelin loss may determine the severity of early disease and the subsequent risk of clinically definite MS development. However, in contrast we found that WM lesion myelin loss was pivotal for MS conversion. Regional myelination measures may thus play an important role in future clinical risk stratification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.