Abstract
A multi-component fuel vaporization model has been developed and implemented into an in-house multi-phase computational fluid dynamics flow solver simulating the flow, spray, and air-fuel mixing processes taking place in gasoline direct injection (GDI) engines. Multi-component fuel properties are modelled assuming a specified composition of pure hydrocarbons. High-pressure and -temperature effects, as well as gas solubility and compressibility, are considered. Remote droplet vaporization is initially investigated in order to quantify and validate the most appropriate vaporization model for conditions relevant to those realized with GDI engines. Phenomena related to the fuel injection system and pressure-swirl atomizer flow as well as the subsequent spray development are considered using an one-dimensional fuel injection equipment model predicting the wave dynamics inside the injection system, a Eulerian volume of fluid-based two-phase flow model simulating the liquid film formation process inside the injection hole of the swirl atomizer and a Lagrangian spray model simulating the subsequent spray development, respectively. The computational results are validated against experimental data obtained in an optical engine and include laser Doppler velocimetry measurements of the charge air motion in the absence of spray injection and charge coupled device images of the fuel spray injected during the induction stroke. The results confirm that fuel composition affects the overall fuel spray vaporization rate, but not significantly relative to other flow and heat transfer processes taking place during the engine operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.