Abstract

ABSTRACT Highly efficient simultaneous removal of paracetamol and Cu2+ ions from aqueous solutions was accomplished by using bovine bone char (BC). The adsorption behaviour was determined by kinetic and equilibrium studies of both single and binary system solutions. BC is a predominantly mesoporous material with a surface area of 103 m2 g−1. The influence of the initial pH on Cu2+ removal was tested, suggesting that the optimal pH was 3.0. The removal of paracetamol from single and binary systems was 9.45 and 12.7%, respectively. On the other hand, the Cu2+ removal was 36.2% for a single system, suggesting a higher affinity for BC. Moreover, in the case of binary mixtures, the presence of paracetamol led to an enhanced affinity of Cu2+ due to a synergistic/cooperative mechanism, which led to a copper removal of 97.3%. The cooperative model was successfully adjusted to the equilibrium data of the binary systems. The modelling results indicated the formation of a first adsorption layer where paracetamol and copper are retained, and a second layer with a great affinity for copper ions after the formation of a Cu-paracetamol complex, leading to higher removal of Cu2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.