Abstract

Using a 50-compartment Python-coded mathematical lung model, we compared mixed venous blood flow (Q) distributions and arterial oxygen tension/inspired oxygen fraction (PaO2/FiO2) relationships in lungs modeled with log normal distributions (LND) of inspired (VI) versus expired (VA) alveolar gas volumes. In lungs with normal V/Q heterogeneity, Q versus VA/Q and Q versus VI/Q distributions were similar with either approach, and PaO2/FiO2 sequences remained indistinguishable. In V/Q heterogeneous lungs at high FiO2, VILND generated low Q versus VA/Q shoulders and some negative VA units, while VALND preserved Q versus VA/Q log normality by blood flow diversion from low VI/Q units. We managed VILND-induced negative VA units either by shunt conversion (VI decreased to 0) or VI redistribution simulating collateral ventilation (VI increased till VA = 0). Comparing oxygen transfer: VALND > VILND (redistribution) > VILND (shunt). In V/Q heterogeneous lungs VALND and VILND (redistribution) regained near optimal oxygen transfer on 100% oxygen, while impairment persisted with VILND (shunt). Unlike VALND, VILND (redistribution) produced Q versus VA/Q distributions in V/Q heterogeneity compatible with multiple inert gas (MIGET) reports. VILND (redistribution) is a physiologically-based MIGET-compatible alternative to West's original VALND lung modeling approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.