Abstract

In breast cancer diagnosis, the number of mitotic cells in a specific area is an important measure. It indicates how far the tumour has spread, which has consequences for forecasting the aggressiveness of cancer. Mitosis counting is a time-consuming and challenging technique that a pathologist does manually by examining Hematoxylin and Eosin (H&E) stained biopsy slices under a microscope. Due to limited datasets and the resemblance between mitotic and non-mitotic cells, detecting mitosis in H&E stained slices is difficult. By assisting in the screening, identifying, and labelling of mitotic cells, computer-aided mitosis detection technologies make the entire procedure much easier. For computer-aided detection approaches of smaller datasets, pre-trained convolutional neural networks are extensively employed. The usefulness of a multi CNN framework with three pre-trained CNNs is investigated in this research for mitosis detection. Features were collected from histopathology data and identified using VGG16, ResNet50, and DenseNet201 pre-trained networks. The proposed framework utilises all training folders of the MITOS dataset provided for the MITOS-ATYPIA contest 2014 and all the 73 folders of the TUPAC16 dataset. Each pre-trained Convolutional Neural Network model, such as VGG16, ResNet50 and DenseNet201, provides an accuracy of 83.22%, 73.67%, and 81.75%, respectively. Different combinations of these pre-trained CNNs constitute a multi CNN framework. Performance measures of multi CNN consisting of 3 pre-trained CNNs with Linear SVM give 93.81% precision and 92.41% F1-score compared to multi CNN combinations with other classifiers such as Adaboost and Random Forest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call