Abstract
In this paper, we examine robust clustering behaviour with multiple nontrivial clusters for identically and globally coupled phase oscillators. These systems are such that the dynamics is completely determined by the number of oscillators N and a single scalar function g(ϕ) (the coupling function). Previous work has shown that (a) any clustering can stably appear via choice of a suitable coupling function and (b) open sets of coupling functions can generate heteroclinic network attractors between cluster states of saddle type, though there seem to be no examples where saddles with more than two nontrivial clusters are involved. In this work, we clarify the relationship between the coupling function and the dynamics. We focus on cases where the clusters are inequivalent in the sense of not being related by a temporal symmetry, and demonstrate that there are coupling functions that give robust heteroclinic networks between periodic states involving three or more nontrivial clusters. We consider an example for N = 6 oscillators where the clustering is into three inequivalent clusters. We also discuss some aspects of the bifurcation structure for periodic multi-cluster states and show that the transverse stability of inequivalent clusters can, to a large extent, be varied independently of the tangential stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.