Abstract

The Convolutional Neural Network (CNN) is one of the widely used deep learning models that offers the chance to boost farming productivity through autonomous inference of field conditions. In this paper, CNN is connected to a Support Vector Machine (SVM) to form a new model CNN-SVM; the CNN models chosen are ResNet-50 and VGG16 and the CNN-SVM models formed are ResNet-50-SVM and VGG16-SVM. The method consists of two parts: ResNet-50 and VGG16 for feature extraction and SVM for classification. This paper uses the public multi-class weeds dataset DeepWeeds for training and testing. The proposed ResNet-50-SVM and VGG16-SVM approaches achieved 97.6% and 95.9% recognition accuracies on the DeepWeeds dataset, respectively. The state-of-the-art networks (VGG16, ResNet-50, GoogLeNet, Densenet-121, and PSO-CNN) with the same dataset are accurate at 93.2%, 96.1%, 93.6%, 94.3%, and 96.9%, respectively. In comparison, the accuracy of the proposed methods has been improved by 1.5% and 2.7%, respectively. The proposed ResNet-50-SVM and the VGG16-SVM weed classification approaches are effective and can achieve high recognition accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.