Abstract
Skin diseases are the most common types of health illness faced by people of different age groups. The identification and classification of skin disease problems relies on highly expert doctors and high level instruments which is a time consuming process. To avoid this delay in diagnosis, an automated system is required to identify and classify this skin disease. This paper proposes a convolutional neural network based intelligent system for multi-class skin disease categorization. Three pre-trained deep learning based convolutional neural network models, VGG16, MobileNet, and Inception V3, are used in this study to classify skin disease images. The Dermoscopic image dataset HAM10000 is used for training, validating, and testing. The proposed system is designed, implemented, and tested to classify skin lesion image into one of seven categories. The implementation result of these models using HAM10000 Dataset is obtain as MobileNet accuracy 85.72%,VGG16 accuracy 73.63% and Inception V3accuracy 75.80%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Next-Generation Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.