Abstract
This paper presents a novel approach for automatic segmentation and object detection of tree crowns in airborne images captured from a low-flying Unmanned Aerial Vehicle (UAV) in ecology monitoring applications. Cost effective monitoring in these applications necessitates the use of vision-band-only imaging on the UAV platform; the reduction in spectral resolution (compared to multi- or hyper-spectral imaging) is balanced by the high spatial resolution available (∼20cm/pixel) from the low-flying UAV, when compared to existing satellite or manned-aerial survey data. Our approach to object detection thus uses both geometry and appearance information (through the use of tree shape and shadow information) in addition to spectral information to help accurately distinguish tree crowns within our application. A predictive geometric template for tree detection is constructed using on-board UAV navigation data, sun lighting information and information about the geometry of the target crown. A two-stage detection algorithm is then used to segment tree crowns based on spectral (colour) information convolved with information from the predictive template. Results of our approach are presented using airborne image data collected from a fixed-wing UAV during a weed monitoring and mapping mission over farmland in West Queensland, Australia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.