Abstract

Positive and unlabeled (PU) learning targets a binary classifier on labeled positive data and unlabeled data containing data samples of positive and unknown negative classes, whereas multi-class positive and unlabeled (MPU) learning aims to learn a multi-class classifier assuming labeled data from multiple positive classes. In this paper, we propose a two-step approach for MPU learning on high dimensional data. In the first step, negative samples are selected from unlabeled data using an ensemble of k-nearest neighbors-based outlier detection models in a low dimensional space which is embedded by a linear discriminant function. We present an approach for binary prediction which determines whether a data sample is a negative data sample. In the second step, the linear discriminant function is optimized on the labeled positive data and negative samples selected in the first step. It alternates between updating the parameters of the linear discriminant function and selecting reliable negative samples by detecting outliers in a low-dimensional space. Experimental results using high dimensional text data demonstrate the high performance of the proposed MPU learning method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.