Abstract

Ultrasonic surgical units (USUs) have the advantage of minimizing tissue damage during surgeries that require tissue dissection by reducing problems such as coagulation and unwanted carbonization, but the disadvantage of requiring manual adjustment of power output according to the target tissue. In order to overcome this limitation, it is necessary to determine the properties of in vivo tissues automatically. We propose a multi-classifier that can accurately classify tissues based on the unique impedance of each tissue. For this purpose, a multi-classifier was built based on single classifiers with high classification rates, and the classification accuracy of the proposed model was compared with that of single classifiers for various electrode types (Type-I: 6mm invasive; Type-II: 3mm invasive; Type-III: surface). The sensitivity and positive predictive value (PPV) of the multi-classifier by cross checks were determined. According to the 10-fold cross validation results, the classification accuracy of the proposed model was significantly higher (p<0.05 or <0.01) than that of existing single classifiers for all electrode types. In particular, the classification accuracy of the proposed model was highest when the 3mm invasive electrode (Type-II) was used (sensitivity=97.33–100.00%; PPV=96.71–100.00%). The results of this study are an important contribution to achieving automatic optimal output power adjustment of USUs according to the properties of individual tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.