Abstract
Anatomical, electrophysiological and functional neuroimaging studies show that the human brain is a complex network, where cortico-cortical and thalamo-cortical connections are organized in a specific pattern giving rise to brain function. In our recent studies we found that chemical connectivity between brain regions might be changed in different conditions (e.g. aging, chronic pain, cognitive interference). The elucidation of properties of the human brain multi-chemical networking profile is the subject of this study. In vivo proton magnetic resonance spectroscopy was used to determine relative concentrations of multiple chemicals (N-Acetyl aspartate, choline, glutamate, glutamine, GABA, inositol, glucose, and lactate in relation to creatine/phosphocreatine complex) in 6 brain regions: thalamus, and cingulate, insula, sensorimotor, orbital frontal, and dorsolateral prefrontal cortices. The properties of the brain multi-chemical networking profile within and across the studied regions were examined using correlation analysis. Strong positive correlations were seen between chemicals within brain regions. Negative correlations were primarily seen across brain regions. The cortical connectivity for both neurotransmitters (GABA and glutamate) was stronger than for the other chemicals, and was stronger than for the same neurotransmitters in the thalamus. Factor analysis indicated that the natural clustering of regional chemical concentrations is by brain region and not by chemicals. These findings support the idea for the existence of a specific pattern of multi-chemical networking profile in the brain where the major excitatory and inhibitory neurotransmitters in neocortex perform a regulatory function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.