Abstract

Identifying and classifying microseismic signals is essential to warn of mines’ dangers. Deep learning has replaced traditional methods, but labor-intensive manual identification and varying deep learning outcomes pose challenges. This paper proposes a transfer learning-based convolutional neural network (CNN) method called microseismic signals-convolutional neural network (MS-CNN) to automatically recognize and classify microseismic events and blasts. The model was instructed on a limited sample of data to obtain an optimal weight model for microseismic waveform recognition and classification. A comparative analysis was performed with an existing CNN model and classical image classification models such as AlexNet, GoogLeNet, and ResNet50. The outcomes demonstrate that the MS-CNN model achieved the best recognition and classification effect (99.6% accuracy) in the shortest time (0.31 s to identify 277 images in the test set). Thus, the MS-CNN model can efficiently recognize and classify microseismic events and blasts in practical engineering applications, improving the recognition timeliness of microseismic signals and further enhancing the accuracy of event classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.